Machine Learning Strategies for Freeform PMUTs Design

Jiapeng Xu, Gabriele Schrag, Zongru Doris Shao, Rodrigo Tumolin Rocha, Tingzhong Xu

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

This study investigates the efficacy of multiple machine learning (ML) strategies for optimizing the design of freeform Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) by leveraging a data-centric methodology. We devise a comprehensive four-stage optimization framework comprising a freeform PMUT shape generator, a feature extractor, a finite element analyzer, and ML estimators. The ML evaluation compared to the finite element analysis reveals that the leading ML estimator accomplished over 95% prediction accuracy with notably low error rates. With this framework, a dataset comprising 30,000 samples was processed within 6 seconds, facilitating the rapid selection of optimal PMUT configurations. Our findings highlight the potential of ML methods to significantly accelerate and optimize PMUT design, resulting in improved sensitivity and precise operational frequency control.

OriginalspracheEnglisch
TitelIEEE Ultrasonics, Ferroelectrics, and Frequency Control Joint Symposium, UFFC-JS 2024 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9798350371901
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung2024 IEEE Ultrasonics, Ferroelectrics, and Frequency Control Joint Symposium, UFFC-JS 2024 - Taipei, Taiwan
Dauer: 22 Sept. 202426 Sept. 2024

Publikationsreihe

NameIEEE Ultrasonics, Ferroelectrics, and Frequency Control Joint Symposium, UFFC-JS 2024 - Proceedings

Konferenz

Konferenz2024 IEEE Ultrasonics, Ferroelectrics, and Frequency Control Joint Symposium, UFFC-JS 2024
Land/GebietTaiwan
OrtTaipei
Zeitraum22/09/2426/09/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Machine Learning Strategies for Freeform PMUTs Design“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren