Machine learning of quantum phase transitions

Xiao Yu Dong, Frank Pollmann, Xue Feng Zhang

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

74 Zitate (Scopus)

Abstract

Machine learning algorithms provide a new perspective on the study of physical phenomena. In this Rapid Communication, we explore the nature of quantum phase transitions using a multicolor convolutional neural network (CNN) in combination with quantum Monte Carlo simulations. We propose a method that compresses (d+1)-dimensional space-time configurations to a manageable size and then use them as the input for a CNN. We benchmark our approach on two models and show that both continuous and discontinuous quantum phase transitions can be well detected and characterized. Moreover, we show that intermediate phases, which were not trained, can also be identified using our approach.

OriginalspracheEnglisch
Aufsatznummer121104
FachzeitschriftPhysical Review B
Jahrgang99
Ausgabenummer12
DOIs
PublikationsstatusVeröffentlicht - 7 März 2019

Fingerprint

Untersuchen Sie die Forschungsthemen von „Machine learning of quantum phase transitions“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren