Machine Learning in Robotic Ultrasound Imaging: Challenges and Perspectives

Yuan Bi, Zhongliang Jiang, Felix Duelmer, Dianye Huang, Nassir Navab

Publikation: Beitrag in FachzeitschriftÜbersichtsartikelBegutachtung

1 Zitat (Scopus)

Abstract

This article reviews recent advances in intelligent robotic ultrasound imaging systems. We begin by presenting the commonly employed robotic mechanisms and control techniques in robotic ultrasound imaging, along with their clinical applications. Subsequently, we focus on the deployment of machine learning techniques in the development of robotic sonographers, emphasizing crucial developments aimed at enhancing the intelligence of these systems. The methods for achieving autonomous action reasoning are categorized into two sets of approaches: those relying on implicit environmental data interpretation and those using explicit interpretation. Throughout this exploration, we also discuss practical challenges, including those related to the scarcity of medical data, the need for a deeper understanding of the physical aspects involved, and effective data representation approaches. We conclude by highlighting the open problems in the field and analyzing different possible perspectives on how the community could move forward in this research area.

OriginalspracheEnglisch
Seiten (von - bis)335-357
Seitenumfang23
FachzeitschriftAnnual Review of Control, Robotics, and Autonomous Systems
Jahrgang7
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 10 Juli 2024

Fingerprint

Untersuchen Sie die Forschungsthemen von „Machine Learning in Robotic Ultrasound Imaging: Challenges and Perspectives“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren