Machine learning from imbalanced data-sets: An application to the bike-sharing inventory problem

Giovanni Ceccarelli, Guido Cantelmo, Marialisa Nigro, Constantinos Antoniou

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

5 Zitate (Scopus)

Abstract

One of the major issue bike sharing operators struggle to deal with is the bicycle rebalancing activity, i.e. optimizing the fleet location reducing the related activity cost. In order to reduce operational cost generated by rebalancing and to facilitate the adoption of bike sharing by users, it is extremely important to estimate the correct value of bicycles (and available docks in case of station-based bike sharing), that is the optimal inventory level. In this paper we investigate the potential of using machine learning techniques for estimating the inventory level to address the station-based bike sharing static rebalancing in the case of imbalanced data-set. Specifically, Random Forest (RF) and Gradient Tree Boosting classifiers have been proposed, together with a new iterative approach based on RF. All the methods have been tested adopting real world data of New York City bikes together with weather data.

OriginalspracheEnglisch
Titel2021 7th International Conference on Models and Technologies for Intelligent Transportation Systems, MT-ITS 2021
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9781728189956
DOIs
PublikationsstatusVeröffentlicht - 16 Juni 2021
Veranstaltung7th International Conference on Models and Technologies for Intelligent Transportation Systems, MT-ITS 2021 - Heraklion, Griechenland
Dauer: 16 Juni 202117 Juni 2021

Publikationsreihe

Name2021 7th International Conference on Models and Technologies for Intelligent Transportation Systems, MT-ITS 2021

Konferenz

Konferenz7th International Conference on Models and Technologies for Intelligent Transportation Systems, MT-ITS 2021
Land/GebietGriechenland
OrtHeraklion
Zeitraum16/06/2117/06/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Machine learning from imbalanced data-sets: An application to the bike-sharing inventory problem“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren