Machine Learning based Performance Prediction of Microcontrollers using Speed Monitors

Riccardo Cantoro, Martin Huch, Tobias Kilian, Raffaele Martone, Ulf Schlichtmann, Giovanni Squillero

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

19 Zitate (Scopus)

Abstract

During the manufacturing process, electronic devices are thoroughly tested for defects. However, testing for well-known fault models, such as stuck-At and transition delay, may not be sufficient for an effective performance screening. In modern devices, Design-for-Testability features embedded at design time can allow the tester to apply stimuli and measure different critical parameters. We propose to use some of these structures, namely the speed monitors, to predict the maximum operating speed, and screen out under-performing devices. We design a complete methodology, from the extraction of robust labels, through a machine-learning algorithm, down to a post-processing step, able to meet the quality standards imposed by industry. Experimental results using real production data demonstrate the feasibility of the approach.

OriginalspracheEnglisch
Titel2020 IEEE International Test Conference, ITC 2020
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9781728191133
DOIs
PublikationsstatusVeröffentlicht - 1 Nov. 2020
Veranstaltung2020 IEEE International Test Conference, ITC 2020 - Washington, USA/Vereinigte Staaten
Dauer: 1 Nov. 20206 Nov. 2020

Publikationsreihe

NameProceedings - International Test Conference
Band2020-November
ISSN (Print)1089-3539

Konferenz

Konferenz2020 IEEE International Test Conference, ITC 2020
Land/GebietUSA/Vereinigte Staaten
OrtWashington
Zeitraum1/11/206/11/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „Machine Learning based Performance Prediction of Microcontrollers using Speed Monitors“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren