Machine Learning and Optoelectronic Materials Discovery: A Growing Synergy

Felix Mayr, Milan Harth, Ioannis Kouroudis, Michael Rinderle, Alessio Gagliardi

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

15 Zitate (Scopus)

Abstract

Novel optoelectronic materials have the potential to revolutionize the ongoing green transition by both providing more efficient photovoltaic (PV) devices and lowering energy consumption of devices like LEDs and sensors. The lead candidate materials for these applications are both organic semiconductors and more recently perovskites. This Perspective illustrates how novel machine learning techniques can help explore these materials, from speeding up ab initio calculations toward experimental guidance. Furthermore, based on existing work, perspectives around machine-learned molecular dynamics potentials, physically informed neural networks, and generative methods are outlined.

OriginalspracheEnglisch
Seiten (von - bis)1940-1951
Seitenumfang12
FachzeitschriftJournal of Physical Chemistry Letters
Jahrgang13
Ausgabenummer8
DOIs
PublikationsstatusVeröffentlicht - 3 März 2022

Fingerprint

Untersuchen Sie die Forschungsthemen von „Machine Learning and Optoelectronic Materials Discovery: A Growing Synergy“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren