Machine Learning & multiscale simulations: Toward fast screening of organic semiconductor materials

Michael Rinderle, Alessio Gagliardi

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

Organic semiconductor devices promise cost-efficient processability at low temperatures, but the usually amorphous materials suffer from low charge carrier mobility. The search for high mobility organic semiconductor materials has thrived data science and Machine Learning approaches to screen the vast amount of possible organic materials. We present a multiscale simulation model based on machine learned transfer integrals to compute the charge carrier mobility in organic thin films.

OriginalspracheEnglisch
Titel2021 International Conference on Numerical Simulation of Optoelectronic Devices, NUSOD 2021
Herausgeber (Verlag)IEEE Computer Society
Seiten1-2
Seitenumfang2
ISBN (elektronisch)9781665412766
DOIs
PublikationsstatusVeröffentlicht - 13 Sept. 2021
Veranstaltung2021 International Conference on Numerical Simulation of Optoelectronic Devices, NUSOD 2021 - Turin, Italien
Dauer: 13 Sept. 202117 Sept. 2021

Publikationsreihe

NameProceedings of the International Conference on Numerical Simulation of Optoelectronic Devices, NUSOD
Band2021-September
ISSN (Print)2158-3234

Konferenz

Konferenz2021 International Conference on Numerical Simulation of Optoelectronic Devices, NUSOD 2021
Land/GebietItalien
OrtTurin
Zeitraum13/09/2117/09/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Machine Learning & multiscale simulations: Toward fast screening of organic semiconductor materials“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren