Lower bounds on the sizes of integer programs without additional variables

Volker Kaibel, Stefan Weltge

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

For a given set X ⊆ Z d of integer points, we investigate the smallest number of facets of any polyhedron whose set of integer points is conv(X) ∩ Z d . This quantity, which we call the relaxation complexity of X, corresponds to the smallest number of linear inequalities of any integer program having X as the set of feasible solutions that does not use auxiliary variables. We show that the use of auxiliary variables is essential for constructing polynomial size integer programming formulations in many relevant cases. In particular, we provide asymptotically tight exponential lower bounds on the relaxation complexity of the integer points of several well-known combinatorial polytopes, including the traveling salesman polytope and the spanning tree polytope.

OriginalspracheEnglisch
TitelInteger Programming and Combinatorial Optimization - 17th International Conference, IPCO 2014, Proceedings
Herausgeber (Verlag)Springer Verlag
Seiten321-332
Seitenumfang12
ISBN (Print)9783319075563
DOIs
PublikationsstatusVeröffentlicht - 2014
Extern publiziertJa
Veranstaltung17th International Conference on Integer Programming and Combinatorial Optimization, IPCO 2014 - Bonn, Deutschland
Dauer: 23 Juni 201425 Juni 2014

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band8494 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz17th International Conference on Integer Programming and Combinatorial Optimization, IPCO 2014
Land/GebietDeutschland
OrtBonn
Zeitraum23/06/1425/06/14

Fingerprint

Untersuchen Sie die Forschungsthemen von „Lower bounds on the sizes of integer programs without additional variables“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren