Low Updating Frequency Model-Free Predictive Control Using Time-Series Model on PMSM Drives

Yao Wei, Dongliang Ke, Kunkun Zuo, Fengxiang Wang, Ralph Kennel

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

The model-free predictive control (MFPC) strategy is commonly used to address the problem of weak robustness in model-based predictive control (MBPC). However, due to the estimation algorithm requiring large processor resources in this strategy, the possibility of overrun errors cannot be avoided fully. To release this problem, a low updating frequency MFPC is presented in this paper to prevent overrun error and reduce the influences on model accuracy. The algorithm is based on a time-series model with a recursive least square (RLS) estimation algorithm, and uses spline interpolation to obtain multiple groups of extended data and insert them into the regressive vector. The latest terms of the vector are used to generate coefficients in the model and predict the output signals to the next sampling period through multi-step prediction. The error and stability are analyzed theoretically, and the advantages of this method, including better model quality and current quality with enhanced robustness, are verified through experimental results.

OriginalspracheEnglisch
TitelConference Proceedings of the 2023 3rd International Joint Conference on Energy, Electrical and Power Engineering
Redakteure/-innenCungang Hu, Wenping Cao
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten138-151
Seitenumfang14
ISBN (Print)9789819739394
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung3rd International Joint Conference on Energy, Electrical and Power Engineering, CoEEPE 2023 - Melbourne, Australien
Dauer: 22 Nov. 202324 Nov. 2023

Publikationsreihe

NameLecture Notes in Electrical Engineering
Band1208 LNEE
ISSN (Print)1876-1100
ISSN (elektronisch)1876-1119

Konferenz

Konferenz3rd International Joint Conference on Energy, Electrical and Power Engineering, CoEEPE 2023
Land/GebietAustralien
OrtMelbourne
Zeitraum22/11/2324/11/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Low Updating Frequency Model-Free Predictive Control Using Time-Series Model on PMSM Drives“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren