Low-Resource Finetuning of Foundation Models Beats State-of-the-Art in Histopathology

Benedikt Roth, Valentin Koch, Sophia J. Wagner, Julia A. Schnabel, Carsten Marr, Tingying Peng

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

To handle the large scale of whole slide images in computational pathology, most approaches first tessellate the images into smaller patches, extract features from these patches, and finally aggregate the feature vectors with weakly-supervised learning. The performance of this workflow strongly depends on the quality of the extracted features. Recently, foundation models in computer vision showed that leveraging huge amounts of data through supervised or self-supervised learning improves feature quality and generalizability for a variety of tasks. In this study, we benchmark the most popular vision foundation models as feature extractors for histopathology data. We evaluate the models in two settings: slide-level classification and patch-level classification. We show that foundation models are a strong baseline. Our experiments demonstrate that by finetuning a foundation model on a single GPU for only two hours or three days depending on the dataset, we can match or outperform state-of-the-art feature extractors for computational pathology. These findings imply that even with little resources one can finetune a feature extractor tailored towards a specific downstream task and dataset. This is a considerable shift from the current state, where only few institutions with large amounts of resources and datasets are able to train a feature extractor. We publish all code used for training and evaluation as well as the finetuned models1.

OriginalspracheEnglisch
TitelIEEE International Symposium on Biomedical Imaging, ISBI 2024 - Conference Proceedings
Herausgeber (Verlag)IEEE Computer Society
ISBN (elektronisch)9798350313338
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung21st IEEE International Symposium on Biomedical Imaging, ISBI 2024 - Athens, Griechenland
Dauer: 27 Mai 202430 Mai 2024

Publikationsreihe

NameProceedings - International Symposium on Biomedical Imaging
ISSN (Print)1945-7928
ISSN (elektronisch)1945-8452

Konferenz

Konferenz21st IEEE International Symposium on Biomedical Imaging, ISBI 2024
Land/GebietGriechenland
OrtAthens
Zeitraum27/05/2430/05/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Low-Resource Finetuning of Foundation Models Beats State-of-the-Art in Histopathology“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren