Low-Rank Structured MMSE Channel Estimation with Mixtures of Factor Analyzers

Benedikt Fesl, Nurettin Turan, Wolfgang Utschick

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

This work proposes a generative modeling-aided channel estimator based on mixtures of factor analyzers (MFA). In an offline step, the parameters of the generative model are inferred via an expectation-maximization (EM) algorithm in order to learn the underlying channel distribution of a whole communication scenario inside a base station (BS) cell. Thereby, the wireless channels are effectively modeled on a piecewise linear subspace which is achieved by the low-rank structure of the learned covariances of the MFA. This suits the low-rank structure of wireless channels at high frequencies and additionally saves parameters and prevents overfitting. Afterwards, the trained MFA model is used online to perform channel estimation with a closed-form solution of the estimator which asymptotically converges to the minimum mean square error (MMSE) estimator. Numerical results based on real-world measurements demonstrate the great potential of the proposed approach for channel estimation.

OriginalspracheEnglisch
TitelConference Record of the 57th Asilomar Conference on Signals, Systems and Computers, ACSSC 2023
Redakteure/-innenMichael B. Matthews
Herausgeber (Verlag)IEEE Computer Society
Seiten375-380
Seitenumfang6
ISBN (elektronisch)9798350325744
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung57th Asilomar Conference on Signals, Systems and Computers, ACSSC 2023 - Pacific Grove, USA/Vereinigte Staaten
Dauer: 29 Okt. 20231 Nov. 2023

Publikationsreihe

NameConference Record - Asilomar Conference on Signals, Systems and Computers
ISSN (Print)1058-6393

Konferenz

Konferenz57th Asilomar Conference on Signals, Systems and Computers, ACSSC 2023
Land/GebietUSA/Vereinigte Staaten
OrtPacific Grove
Zeitraum29/10/231/11/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Low-Rank Structured MMSE Channel Estimation with Mixtures of Factor Analyzers“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren