Low-Rank Parity-Check Codes over the Ring of Integers Modulo a Prime Power

Julian Renner, Sven Puchinger, Antonia Wachter-Zeh, Camilla Hollanti, Ragnar Freij-Hollanti

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

7 Zitate (Scopus)

Abstract

We define and analyze low-rank parity-check (LRPC) codes over extension rings of the finite chain ring {{\mathbb{Z}}-{{p^r}}}, where p is a prime and r is a positive integer. LRPC codes have originally been proposed by Gaborit et al. (2013) over finite fields for cryptographic applications. The adaption to finite rings is inspired by a recent paper by Kamche et al. (2019), which constructed Gabidulin codes over finite principle ideal rings with applications to space-time codes and network coding. We give a decoding algorithm based on simple linear-algebraic operations. Further, we derive an upper bound on the failure probability of the decoder. The upper bound is valid for errors whose rank is equal to the free rank.

OriginalspracheEnglisch
Titel2020 IEEE International Symposium on Information Theory, ISIT 2020 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten19-24
Seitenumfang6
ISBN (elektronisch)9781728164328
DOIs
PublikationsstatusVeröffentlicht - Juni 2020
Veranstaltung2020 IEEE International Symposium on Information Theory, ISIT 2020 - Los Angeles, USA/Vereinigte Staaten
Dauer: 21 Juli 202026 Juli 2020

Publikationsreihe

NameIEEE International Symposium on Information Theory - Proceedings
Band2020-June
ISSN (Print)2157-8095

Konferenz

Konferenz2020 IEEE International Symposium on Information Theory, ISIT 2020
Land/GebietUSA/Vereinigte Staaten
OrtLos Angeles
Zeitraum21/07/2026/07/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „Low-Rank Parity-Check Codes over the Ring of Integers Modulo a Prime Power“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren