TY - GEN
T1 - Loudspeaker-based sound reproduction for evaluating noise transmission into the car cabin
AU - Kuntz, Matthieu
AU - Müller, Gregor Johannes
AU - Kalinke, Peter
AU - Seeber, Bernhard U.
N1 - Publisher Copyright:
© INTER-NOISE 2021 .All right reserved.
PY - 2021
Y1 - 2021
N2 - Virtual and laboratory-based design techniques can accelerate the development process over conventional prototype-and-field-test procedures. In car acoustics, the transmission of outside airborne noise into the cabin needs to be understood and managed. Here, we evaluate the accuracy of sound field recording and reproduction techniques for investigating the transmission of airborne noise into the driver's cabin of a car. Reference measurements of a real sound field, generated by a truck with idling engine to create a realistic scenario, were carried out in a semi-anechoic chamber. The reference sound field was recorded inside and around a test car. Additionally, a spatial recording of the reference sound field was carried out and used to reproduce the reference sound field over a loudspeaker array in a different, fully anechoic chamber, where the sound field was again measured inside and around the same test car. A comparison of the measured loudness inside the test car shows that this key parameter for sound quality could be reproduced rather faithfully over a loudspeaker array in a controlled testing facility.
AB - Virtual and laboratory-based design techniques can accelerate the development process over conventional prototype-and-field-test procedures. In car acoustics, the transmission of outside airborne noise into the cabin needs to be understood and managed. Here, we evaluate the accuracy of sound field recording and reproduction techniques for investigating the transmission of airborne noise into the driver's cabin of a car. Reference measurements of a real sound field, generated by a truck with idling engine to create a realistic scenario, were carried out in a semi-anechoic chamber. The reference sound field was recorded inside and around a test car. Additionally, a spatial recording of the reference sound field was carried out and used to reproduce the reference sound field over a loudspeaker array in a different, fully anechoic chamber, where the sound field was again measured inside and around the same test car. A comparison of the measured loudness inside the test car shows that this key parameter for sound quality could be reproduced rather faithfully over a loudspeaker array in a controlled testing facility.
UR - http://www.scopus.com/inward/record.url?scp=85117371486&partnerID=8YFLogxK
U2 - 10.3397/IN-2021-1686
DO - 10.3397/IN-2021-1686
M3 - Conference contribution
AN - SCOPUS:85117371486
T3 - Proceedings of INTER-NOISE 2021 - 2021 International Congress and Exposition of Noise Control Engineering
BT - Proceedings of INTER-NOISE 2021 - 2021 International Congress and Exposition of Noise Control Engineering
A2 - Dare, Tyler
A2 - Bolton, Stuart
A2 - Davies, Patricia
A2 - Xue, Yutong
A2 - Ebbitt, Gordon
PB - The Institute of Noise Control Engineering of the USA, Inc.
T2 - 50th International Congress and Exposition of Noise Control Engineering, INTER-NOISE 2021
Y2 - 1 August 2021 through 5 August 2021
ER -