TY - JOUR
T1 - Long-term reproducibility of opportunistically assessed vertebral bone mineral density and texture features in routine clinical multidetector computed tomography using an automated segmentation framework
AU - Bodden, Jannis
AU - Dieckmeyer, Michael
AU - Sollmann, Nico
AU - Rühling, Sebastian
AU - Prucker, Philipp
AU - Löffler, Maximilian T.
AU - Burian, Egon
AU - Subburaj, Karupppasamy
AU - Zimmer, Claus
AU - Kirschke, Jan S.
AU - Baum, Thomas
N1 - Publisher Copyright:
© 2023 Quantitative Imaging in Medicine and Surgery.
PY - 2023/9
Y1 - 2023/9
N2 - Background: To investigate reproducibility of texture features and volumetric bone mineral density (vBMD) extracted from trabecular bone in the thoracolumbar spine in routine clinical multi-detector computed tomography (MDCT) data in a single scanner environment. Methods: Patients who underwent two routine clinical thoraco-abdominal MDCT exams at a single scanner with a time interval of 6 to 26 months (n=203, 131 males; time interval mean, 13 months; median, 12 months) were included in this observational study. Exclusion criteria were metabolic and hematological disorders, bone metastases, use of bone-active medications, and history of osteoporotic vertebral fractures (VFs) or prior diagnosis of osteoporosis. A convolutional neural network (CNN)-based framework was used for automated spine labeling and segmentation (T5-L5), asynchronous Hounsfield unit (HU)-to-BMD calibration, and correction for the intravenous contrast medium phase. Vertebral vBMD and six texture features [varianceglobal, entropy, short-run emphasis (SRE), long-run emphasis (LRE), run-length non-uniformity (RLN), and run percentage (RP)] were extracted for mid- (T5-T8) and lower thoracic (T9-T12), and lumbar vertebrae (L1-L5), respectively. Relative annual changes were calculated in texture features and vBMD for each vertebral level and sorted by sex, and changes were checked for statistical significance (P<0.05) using paired t-tests. Root mean square coefficient of variation (RMSCV) and root mean square error (RMSE) were calculated as measures of variability. Results: SRE, LRE, RLN, and RP exhibited substantial reproducibility with RMSCV-values below 2%, for both sexes and at all spine levels, while vBMD was less reproducible (RMSCV =11.9-16.2%). Entropy showed highest variability (RMSCV =4.34-7.69%) due to statistically significant increases [range, mean ± standard deviation: (4.40±5.78)% to (8.36±8.66)%, P<0.001]. RMSCV of varianceglobal ranged from 1.60% to 3.03%. Conclusions: Opportunistic assessment of texture features in a single scanner environment using the presented CNN-based framework yields substantial reproducibility, outperforming vBMD reproducibility. Lowest scan-rescan variability was found for higher-order texture features. Further studies are warranted to determine, whether microarchitectural changes to the trabecular bone may be assessed through texture features.
AB - Background: To investigate reproducibility of texture features and volumetric bone mineral density (vBMD) extracted from trabecular bone in the thoracolumbar spine in routine clinical multi-detector computed tomography (MDCT) data in a single scanner environment. Methods: Patients who underwent two routine clinical thoraco-abdominal MDCT exams at a single scanner with a time interval of 6 to 26 months (n=203, 131 males; time interval mean, 13 months; median, 12 months) were included in this observational study. Exclusion criteria were metabolic and hematological disorders, bone metastases, use of bone-active medications, and history of osteoporotic vertebral fractures (VFs) or prior diagnosis of osteoporosis. A convolutional neural network (CNN)-based framework was used for automated spine labeling and segmentation (T5-L5), asynchronous Hounsfield unit (HU)-to-BMD calibration, and correction for the intravenous contrast medium phase. Vertebral vBMD and six texture features [varianceglobal, entropy, short-run emphasis (SRE), long-run emphasis (LRE), run-length non-uniformity (RLN), and run percentage (RP)] were extracted for mid- (T5-T8) and lower thoracic (T9-T12), and lumbar vertebrae (L1-L5), respectively. Relative annual changes were calculated in texture features and vBMD for each vertebral level and sorted by sex, and changes were checked for statistical significance (P<0.05) using paired t-tests. Root mean square coefficient of variation (RMSCV) and root mean square error (RMSE) were calculated as measures of variability. Results: SRE, LRE, RLN, and RP exhibited substantial reproducibility with RMSCV-values below 2%, for both sexes and at all spine levels, while vBMD was less reproducible (RMSCV =11.9-16.2%). Entropy showed highest variability (RMSCV =4.34-7.69%) due to statistically significant increases [range, mean ± standard deviation: (4.40±5.78)% to (8.36±8.66)%, P<0.001]. RMSCV of varianceglobal ranged from 1.60% to 3.03%. Conclusions: Opportunistic assessment of texture features in a single scanner environment using the presented CNN-based framework yields substantial reproducibility, outperforming vBMD reproducibility. Lowest scan-rescan variability was found for higher-order texture features. Further studies are warranted to determine, whether microarchitectural changes to the trabecular bone may be assessed through texture features.
KW - Texture analysis (TA)
KW - X-ray computed tomography
KW - bone density
KW - bone matrix
KW - bone microstructure
KW - osteoporosis
UR - http://www.scopus.com/inward/record.url?scp=85171129501&partnerID=8YFLogxK
U2 - 10.21037/qims-23-19
DO - 10.21037/qims-23-19
M3 - Article
AN - SCOPUS:85171129501
SN - 2223-4292
VL - 13
SP - 5472
EP - 5482
JO - Quantitative Imaging in Medicine and Surgery
JF - Quantitative Imaging in Medicine and Surgery
IS - 9
ER -