TY - GEN
T1 - Long-term & short-term bike sharing demand predictions using contextual data
AU - Tabandeh, Mirfarnam
AU - Antoniou, Constantinos
AU - Cantelmo, Guido
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Bike Sharing Systems (BSSs) have gained popularity in the last two decades, becoming an integrated part of our mobility ecosystem. One of the major issues BSS operators struggle to deal with is forecasting the mobility demand, namely how many bikes are needed, when, and where. To deal with this challenge, this paper introduces a novel deep learning architecture that combines Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and contextual data to predict hourly demand in large-scale bike-sharing systems one day ahead. Specifically, the CNN layer captures spatio-temporal trends and is used to model long-term demand patterns, while the LSTM layer focuses on short-term mobility strategies. A separate Neural Network is used to include contextual data, such as weather data or special events. Predictions are provided for the next 24 hours at a frequency of one hour. The modular structure of the model ensures that the framework can be used in different situations and that individual components can be replaced. Similarly, additional contextual information can be included with limited effort. Results show that such a modular framework, where each module captures different dynamics (weather effects, long-term mobility patterns, short-term mobility patterns) outperforms the baseline models and also reduces their computational times.
AB - Bike Sharing Systems (BSSs) have gained popularity in the last two decades, becoming an integrated part of our mobility ecosystem. One of the major issues BSS operators struggle to deal with is forecasting the mobility demand, namely how many bikes are needed, when, and where. To deal with this challenge, this paper introduces a novel deep learning architecture that combines Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and contextual data to predict hourly demand in large-scale bike-sharing systems one day ahead. Specifically, the CNN layer captures spatio-temporal trends and is used to model long-term demand patterns, while the LSTM layer focuses on short-term mobility strategies. A separate Neural Network is used to include contextual data, such as weather data or special events. Predictions are provided for the next 24 hours at a frequency of one hour. The modular structure of the model ensures that the framework can be used in different situations and that individual components can be replaced. Similarly, additional contextual information can be included with limited effort. Results show that such a modular framework, where each module captures different dynamics (weather effects, long-term mobility patterns, short-term mobility patterns) outperforms the baseline models and also reduces their computational times.
KW - Bike-sharing
KW - Convolutional Neural Networks
KW - Long Short-term Memory
KW - contextual data
KW - spatio-temporal demand predictions
UR - http://www.scopus.com/inward/record.url?scp=85175400101&partnerID=8YFLogxK
U2 - 10.1109/MT-ITS56129.2023.10241377
DO - 10.1109/MT-ITS56129.2023.10241377
M3 - Conference contribution
AN - SCOPUS:85175400101
T3 - 2023 8th International Conference on Models and Technologies for Intelligent Transportation Systems, MT-ITS 2023
BT - 2023 8th International Conference on Models and Technologies for Intelligent Transportation Systems, MT-ITS 2023
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 8th International Conference on Models and Technologies for Intelligent Transportation Systems, MT-ITS 2023
Y2 - 14 June 2023 through 16 June 2023
ER -