Long-Horizon Direct Model Predictive Control Based on Neural Networks for Electrical Drives

Issa Hammoud, Sebastian Hentzelt, Thimo Oehlschlaegel, Ralph Kennel

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

23 Zitate (Scopus)

Abstract

In this work, the use of a multilayer perceptron feedforward neural network is proposed to capture the solution of the long-horizon finite control set model predictive control (FCS-MPC) problem in electrical drive systems. The motivation behind this research is based on treating the direct model predictive control problem of a power converter as a multi-class classification problem as it consists of a finite set of switching states, which can be seen as a finite number of different classes. By simulation results and hardware in the loop (HIL) test, it is proved that the solution of the long-horizon FCS-MPC can be captured by a real-time computationally implementable neural network that recognizes the converter switching states with an accuracy of 85 - 90%. Hence, it captures the performance enhancement of long horizon FCS-MPC in a computationally efficient manner (15.84 μs).

OriginalspracheEnglisch
TitelProceedings - IECON 2020
Untertitel46th Annual Conference of the IEEE Industrial Electronics Society
Herausgeber (Verlag)IEEE Computer Society
Seiten3057-3064
Seitenumfang8
ISBN (elektronisch)9781728154145
DOIs
PublikationsstatusVeröffentlicht - 18 Okt. 2020
Veranstaltung46th Annual Conference of the IEEE Industrial Electronics Society, IECON 2020 - Virtual, Singapore, Singapur
Dauer: 19 Okt. 202021 Okt. 2020

Publikationsreihe

NameIECON Proceedings (Industrial Electronics Conference)
Band2020-October

Konferenz

Konferenz46th Annual Conference of the IEEE Industrial Electronics Society, IECON 2020
Land/GebietSingapur
OrtVirtual, Singapore
Zeitraum19/10/2021/10/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „Long-Horizon Direct Model Predictive Control Based on Neural Networks for Electrical Drives“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren