TY - GEN
T1 - Locality-sensitive operators for parallel main-memory database clusters
AU - Rödiger, Wolf
AU - Mühlbauer, Tobias
AU - Unterbrunner, Philipp
AU - Reiser, Angelika
AU - Kemper, Alfons
AU - Neumann, Thomas
PY - 2014
Y1 - 2014
N2 - The growth in compute speed has outpaced the growth in network bandwidth over the last decades. This has led to an increasing performance gap between local and distributed processing. A parallel database cluster thus has to maximize the locality of query processing. A common technique to this end is to co-partition relations to avoid expensive data shuffling across the network. However, this is limited to one attribute per relation and is expensive to maintain in the face of updates. Other attributes often exhibit a fuzzy co-location due to correlations with the distribution key but current approaches do not leverage this. In this paper, we introduce locality-sensitive data shuffling, which can dramatically reduce the amount of network communication for distributed operators such as join and aggregation. We present four novel techniques: (i) optimal partition assignment exploits locality to reduce the network phase duration; (ii) communication scheduling avoids bandwidth underutilization due to cross traffic; (iii) adaptive radix partitioning retains locality during data repartitioning and handles value skew gracefully; and (iv) selective broadcast reduces network communication in the presence of extreme value skew or large numbers of duplicates. We present comprehensive experimental results, which show that our techniques can improve performance by up to factor of 5 for fuzzy co-location and a factor of 3 for inputs with value skew.
AB - The growth in compute speed has outpaced the growth in network bandwidth over the last decades. This has led to an increasing performance gap between local and distributed processing. A parallel database cluster thus has to maximize the locality of query processing. A common technique to this end is to co-partition relations to avoid expensive data shuffling across the network. However, this is limited to one attribute per relation and is expensive to maintain in the face of updates. Other attributes often exhibit a fuzzy co-location due to correlations with the distribution key but current approaches do not leverage this. In this paper, we introduce locality-sensitive data shuffling, which can dramatically reduce the amount of network communication for distributed operators such as join and aggregation. We present four novel techniques: (i) optimal partition assignment exploits locality to reduce the network phase duration; (ii) communication scheduling avoids bandwidth underutilization due to cross traffic; (iii) adaptive radix partitioning retains locality during data repartitioning and handles value skew gracefully; and (iv) selective broadcast reduces network communication in the presence of extreme value skew or large numbers of duplicates. We present comprehensive experimental results, which show that our techniques can improve performance by up to factor of 5 for fuzzy co-location and a factor of 3 for inputs with value skew.
UR - http://www.scopus.com/inward/record.url?scp=84901798856&partnerID=8YFLogxK
U2 - 10.1109/ICDE.2014.6816684
DO - 10.1109/ICDE.2014.6816684
M3 - Conference contribution
AN - SCOPUS:84901798856
SN - 9781479925544
T3 - Proceedings - International Conference on Data Engineering
SP - 592
EP - 603
BT - 2014 IEEE 30th International Conference on Data Engineering, ICDE 2014
PB - IEEE Computer Society
T2 - 30th IEEE International Conference on Data Engineering, ICDE 2014
Y2 - 31 March 2014 through 4 April 2014
ER -