Local Asymptotic Stability Analysis and Region of Attraction Estimation with Gaussian Processes

Armin Lederer, Sandra Hirche

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

11 Zitate (Scopus)

Abstract

Determining the region of attraction of nonlinear systems is a difficult problem, which is typically approached by means of Lyapunov theory. State of the art approaches either provide high flexibility regarding the Lyapunov function or parallelizability of computation. Aiming at both, flexibility and parallelizability, we propose a method to obtain a Lyapunov-like function for stability analysis by learning the infinite horizon cost function with a Gaussian process based on approximate dynamic programming. We develop a novel approach to char-acterize the region of attraction using a Lyapunov-like function, which is analyzed with a sampling-based interval analysis algorithm. Since each interval can be examined independently, the algorithm allows both parallelizable analysis and flexible construction of the Lyapunov-like function.

OriginalspracheEnglisch
Titel2019 IEEE 58th Conference on Decision and Control, CDC 2019
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten1766-1771
Seitenumfang6
ISBN (elektronisch)9781728113982
DOIs
PublikationsstatusVeröffentlicht - Dez. 2019
Veranstaltung58th IEEE Conference on Decision and Control, CDC 2019 - Nice, Frankreich
Dauer: 11 Dez. 201913 Dez. 2019

Publikationsreihe

NameProceedings of the IEEE Conference on Decision and Control
Band2019-December
ISSN (Print)0743-1546
ISSN (elektronisch)2576-2370

Konferenz

Konferenz58th IEEE Conference on Decision and Control, CDC 2019
Land/GebietFrankreich
OrtNice
Zeitraum11/12/1913/12/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Local Asymptotic Stability Analysis and Region of Attraction Estimation with Gaussian Processes“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren