Linear model identification for rotorcraft using adaptive learning

Gonenc Gursoy, Ongun Hazar Aslandogan, Ilkay Yavrucuk

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

Convergence to a unique identification result with an optimum model structure is a goal in rotorcraft system identification. Whether using time domain or frequency domain methods, achievement of this target requires additional tools, startup procedures/algorithms or a-priori information about the plant. In this paper, an adaptive learning based methodology is proposed to improve parameter convergence. The bounded convergence is guaranteed and robust to initial conditions even when there exist redundant derivatives in the initial state-space structure. A converged solution is obtained as a starting point and a typical bias-variance trade-off is performed. The effectiveness of the method is demonstrated through the identification of a Level-D class high-fidelity nonlinear helicopter model. The converged solution and the reduced order model can also be used in other system identification methods/algorithms as a starting identification state.

OriginalspracheEnglisch
Titel77th Annual Vertical Flight Society Forum and Technology Display, FORUM 2021
UntertitelThe Future of Vertical Flight
Herausgeber (Verlag)Vertical Flight Society
ISBN (elektronisch)9781713830016
DOIs
PublikationsstatusVeröffentlicht - 2021
Extern publiziertJa
Veranstaltung77th Annual Vertical Flight Society Forum and Technology Display: The Future of Vertical Flight, FORUM 2021 - Virtual, Online
Dauer: 10 Mai 202114 Mai 2021

Publikationsreihe

Name77th Annual Vertical Flight Society Forum and Technology Display, FORUM 2021: The Future of Vertical Flight

Konferenz

Konferenz77th Annual Vertical Flight Society Forum and Technology Display: The Future of Vertical Flight, FORUM 2021
OrtVirtual, Online
Zeitraum10/05/2114/05/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Linear model identification for rotorcraft using adaptive learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren