Linear image registration through MRF optimization

Ben Glocker, Darko Zikic, Nikos Komodakis, Nikos Paragios, Nassir Navab

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

9 Zitate (Scopus)

Abstract

We propose a Markov Random Field formulation for the linear image registration problem. Transformation parameters are represented by nodes in a fully connected graph where the edges model pairwise dependencies. Parameter estimation is then solved through iterative discrete labeling and discrete optimization while a label space refinement strategy is employed to achieve sub-millimeter accuracy. Our framework can encode any similarity measure, allows for automatic reduction of the degrees of freedom by simple changes on the MRF topology, and is robust to initialization. Promising results on real data and random studies demonstrate the potential of our approach.

OriginalspracheEnglisch
TitelProceedings - 2009 IEEE International Symposium on Biomedical Imaging
UntertitelFrom Nano to Macro, ISBI 2009
Seiten422-425
Seitenumfang4
DOIs
PublikationsstatusVeröffentlicht - 2009
Veranstaltung2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2009 - Boston, MA, USA/Vereinigte Staaten
Dauer: 28 Juni 20091 Juli 2009

Publikationsreihe

NameProceedings - 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2009

Konferenz

Konferenz2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2009
Land/GebietUSA/Vereinigte Staaten
OrtBoston, MA
Zeitraum28/06/091/07/09

Fingerprint

Untersuchen Sie die Forschungsthemen von „Linear image registration through MRF optimization“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren