Light-Induced Transformation of Virus-Like Particles on TiO2

Mona Kohantorabi, Aldo Ugolotti, Benedikt Sochor, Johannes Roessler, Michael Wagstaffe, Alexander Meinhardt, E. Erik Beck, Daniel Silvan Dolling, Miguel Blanco Garcia, Marcus Creutzburg, Thomas F. Keller, Matthias Schwartzkopf, Sarathlal Koyiloth Vayalil, Roland Thuenauer, Gabriela Guédez, Christian Löw, Gregor Ebert, Ulrike Protzer, Wolfgang Hammerschmidt, Reinhard ZeidlerStephan V. Roth, Cristiana Di Valentin, Andreas Stierle, Heshmat Noei

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

Abstract

Titanium dioxide (TiO2) shows significant potential as a self-cleaning material to inactivate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and prevent virus transmission. This study provides insights into the impact of UV-A light on the photocatalytic inactivation of adsorbed SARS-CoV-2 virus-like particles (VLPs) on a TiO2 surface at the molecular and atomic levels. X-ray photoelectron spectroscopy, combined with density functional theory calculations, reveals that spike proteins can adsorb on TiO2 predominantly via their amine and amide functional groups in their amino acids blocks. We employ atomic force microscopy and grazing-incidence small-angle X-ray scattering (GISAXS) to investigate the molecular-scale morphological changes during the inactivation of VLPs on TiO2 under light irradiation. Notably, in situ measurements reveal photoinduced morphological changes of VLPs, resulting in increased particle diameters. These results suggest that the denaturation of structural proteins induced by UV irradiation and oxidation of the virus structure through photocatalytic reactions can take place on the TiO2 surface. The in situ GISAXS measurements under an N2 atmosphere reveal that the virus morphology remains intact under UV light. This provides evidence that the presence of both oxygen and UV light is necessary to initiate photocatalytic reactions on the surface and subsequently inactivate the adsorbed viruses. The chemical insights into the virus inactivation process obtained in this study contribute significantly to the development of solid materials for the inactivation of enveloped viruses.

OriginalspracheEnglisch
Seiten (von - bis)37275-37287
Seitenumfang13
FachzeitschriftACS Applied Materials and Interfaces
Jahrgang16
Ausgabenummer28
DOIs
PublikationsstatusVeröffentlicht - 17 Juli 2024
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Light-Induced Transformation of Virus-Like Particles on TiO2“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren