Lifting methods for manifold-valued variational problems

Thomas Vogt, Evgeny Strekalovskiy, Daniel Cremers, Jan Lellmann

Publikation: Beitrag in Buch/Bericht/KonferenzbandKapitelBegutachtung

4 Zitate (Scopus)

Abstract

Lifting methods allow to transform hard variational problems such as segmentation and optical flow estimation into convex problems in a suitable higherdimensional space. The lifted models can then be efficiently solved to a global optimum, which allows to find approximate global minimizers of the original problem. Recently, these techniques have also been applied to problems with values in a manifold.We provide a review of such methods in a refined framework based on a finite element discretization of the range, which extends the concept of sublabelaccurate lifting to manifolds.We also generalize existing methods for total variation regularization to support general convex regularization.

OriginalspracheEnglisch
TitelHandbook of Variational Methods for Nonlinear Geometric Data
Herausgeber (Verlag)Springer International Publishing
Seiten95-119
Seitenumfang25
ISBN (elektronisch)9783030313517
ISBN (Print)9783030313500
PublikationsstatusVeröffentlicht - 3 Apr. 2020

Fingerprint

Untersuchen Sie die Forschungsthemen von „Lifting methods for manifold-valued variational problems“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren