Leveraging Model Inherent Variable Importance for Stable Online Feature Selection

Johannes Haug, Martin Pawelczyk, Klaus Broelemann, Gjergji Kasneci

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

10 Zitate (Scopus)

Abstract

Feature selection can be a crucial factor in obtaining robust and accurate predictions. Online feature selection models, however, operate under considerable restrictions; they need to efficiently extract salient input features based on a bounded set of observations, while enabling robust and accurate predictions. In this work, we introduce FIRES, a novel framework for online feature selection. The proposed feature weighting mechanism leverages the importance information inherent in the parameters of a predictive model. By treating model parameters as random variables, we can penalize features with high uncertainty and thus generate more stable feature sets. Our framework is generic in that it leaves the choice of the underlying model to the user. Strikingly, experiments suggest that the model complexity has only a minor effect on the discriminative power and stability of the selected feature sets. In fact, using a simple linear model, FIRES obtains feature sets that compete with state-of-the-art methods, while dramatically reducing computation time. In addition, experiments show that the proposed framework is clearly superior in terms of feature selection stability.

OriginalspracheEnglisch
TitelKDD 2020 - Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
Herausgeber (Verlag)Association for Computing Machinery
Seiten1478-1488
Seitenumfang11
ISBN (elektronisch)9781450379984
DOIs
PublikationsstatusVeröffentlicht - 23 Aug. 2020
Extern publiziertJa
Veranstaltung26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2020 - Virtual, Online, USA/Vereinigte Staaten
Dauer: 23 Aug. 202027 Aug. 2020

Publikationsreihe

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Konferenz

Konferenz26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2020
Land/GebietUSA/Vereinigte Staaten
OrtVirtual, Online
Zeitraum23/08/2027/08/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „Leveraging Model Inherent Variable Importance for Stable Online Feature Selection“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren