Leveraging Eye Tracking in Digital Classrooms: A Step Towards Multimodal Model for Learning Assistance

Sean Anthony Byrne, Nora Castner, Ard Kastrati, Martyna Beata Płomecka, William Schaefer, Enkelejda Kasneci, Zoya Bylinskii

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)

Abstract

Instructors who teach digital literacy skills are increasingly faced with the challenges that come with larger student populations and online courses. We asked an educator how we could support student learning and better assist instructors both online and in the classroom. To address these challenges, we discuss how behavioral signals collected from eye tracking and mouse tracking can be combined to offer predictions of student performance. In our preliminary study, participants completed two image masking tasks in Adobe Photoshop based on real college-level course content. We then trained a machine learning model to predict student performance in each task based on data from other students, as a step towards offering automated student assistance and feedback to instructors. We reflect on the challenges and scalability issues to deploying such a system in-the-wild, and present some guidelines for future work.

OriginalspracheEnglisch
TitelProceedings - ETRA 2023
UntertitelACM Symposium on Eye Tracking Research and Applications
Redakteure/-innenStephen N. Spencer
Herausgeber (Verlag)Association for Computing Machinery
ISBN (elektronisch)9798400701504
DOIs
PublikationsstatusVeröffentlicht - 30 Mai 2023
Veranstaltung15th Annual ACM Symposium on Eye Tracking Research and Applications, ETRA 2023 - Tubingen, Deutschland
Dauer: 30 Mai 20232 Juni 2023

Publikationsreihe

NameEye Tracking Research and Applications Symposium (ETRA)

Konferenz

Konferenz15th Annual ACM Symposium on Eye Tracking Research and Applications, ETRA 2023
Land/GebietDeutschland
OrtTubingen
Zeitraum30/05/232/06/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Leveraging Eye Tracking in Digital Classrooms: A Step Towards Multimodal Model for Learning Assistance“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren