Learning workflow petri nets

Javier Esparza, Martin Leucker, Maximilian Schlund

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

11 Zitate (Scopus)

Abstract

Workflow mining is the task of automatically producing a workflow model from a set of event logs recording sequences of workflow events; each sequence corresponds to a use case or workflow instance. Formal approaches to workflow mining assume that the event log is complete (contains enough information to infer the workflow) which is often not the case. We present a learning approach that relaxes this assumption: if the event log is incomplete, our learning algorithm automatically derives queries about the executability of some event sequences. If a teacher answers these queries, the algorithm is guaranteed to terminate with a correct model. We provide matching upper and lower bounds on the number of queries required by the algorithm, and report on the application of an implementation to some examples.

OriginalspracheEnglisch
TitelApplications and Theory of Petri Nets - 31st International Conference, PETRI NETS 2010, Proceedings
Seiten206-225
Seitenumfang20
DOIs
PublikationsstatusVeröffentlicht - 2010
Veranstaltung31st International Conference on Applications and Theory of Petri Nets and Other Models of Concurrency, PETRI NETS 2010 - Braga, Portugal
Dauer: 21 Juni 201025 Juni 2010

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band6128 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz31st International Conference on Applications and Theory of Petri Nets and Other Models of Concurrency, PETRI NETS 2010
Land/GebietPortugal
OrtBraga
Zeitraum21/06/1025/06/10

Fingerprint

Untersuchen Sie die Forschungsthemen von „Learning workflow petri nets“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren