Learning to detect misaligned point clouds

Håkan Almqvist, Martin Magnusson, Tomasz P. Kucner, Achim J. Lilienthal

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

21 Zitate (Scopus)

Abstract

Matching and merging overlapping point clouds is a common procedure in many applications, including mobile robotics, three-dimensional mapping, and object visualization. However, fully automatic point-cloud matching, without manual verification, is still not possible because no matching algorithms exist today that can provide any certain methods for detecting misaligned point clouds. In this article, we make a comparative evaluation of geometric consistency methods for classifying aligned and nonaligned point-cloud pairs. We also propose a method that combines the results of the evaluated methods to further improve the classification of the point clouds. We compare a range of methods on two data sets from different environments related to mobile robotics and mapping. The results show that methods based on a Normal Distributions Transform representation of the point clouds perform best under the circumstances presented herein.

OriginalspracheEnglisch
Seiten (von - bis)662-677
Seitenumfang16
FachzeitschriftJournal of Field Robotics
Jahrgang35
Ausgabenummer5
DOIs
PublikationsstatusVeröffentlicht - Aug. 2018
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Learning to detect misaligned point clouds“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren