Learning the MMSE Channel Estimator

David Neumann, Thomas Wiese, Wolfgang Utschick

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

254 Zitate (Scopus)

Abstract

We present a method for estimating conditionally Gaussian random vectors with random covariance matrices, which uses techniques from the field of machine learning. Such models are typical in communication systems, where the covariance matrix of the channel vector depends on random parameters, e.g., angles of propagation paths. If the covariance matrices exhibit certain Toeplitz and shift-invariance structures, the complexity of the minimum mean squared error (MMSE) channel estimator can be reduced to O(M\log M) floating point operations, where M is the channel dimension. While in the absence of structure the complexity is much higher, we obtain a similarly efficient (but suboptimal) estimator by using the MMSE estimator of the structured model as a blueprint for the architecture of a neural network. This network learns the MMSE estimator for the unstructured model, but only within the given class of estimators that contains the MMSE estimator for the structured model. Numerical simulations with typical spatial channel models demonstrate the generalization properties of the chosen class of estimators to realistic channel models.

OriginalspracheEnglisch
Seiten (von - bis)2905-2917
Seitenumfang13
FachzeitschriftIEEE Transactions on Signal Processing
Jahrgang66
Ausgabenummer11
DOIs
PublikationsstatusVeröffentlicht - 1 Juni 2018

Fingerprint

Untersuchen Sie die Forschungsthemen von „Learning the MMSE Channel Estimator“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren