Learning the Koopman Eigendecomposition: A Diffeomorphic Approach

Petar Bevanda, Johannes Kirmayr, Stefan Sosnowski, Sandra Hirche

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

7 Zitate (Scopus)

Abstract

We present a novel data-driven approach for learning linear representations of a class of stable nonlinear systems using Koopman eigenfunctions. Utilizing the spectral equivalence of topologically conjugate systems, we construct Koopman eigenfunctions corresponding to the nonlinear system to form linear predictors of nonlinear systems. The conjugacy map between a nonlinear system and its Jacobian linearization is learned via a diffeomorphic neural network. The latter allows for a well-defined, supervised learning problem formulation. Given the learner is diffeomorphic per construction, our learned model is asymptotically stable regardless of the representation accuracy. The universality of the diffeomorphic learner leads to the universal approximation ability for Koopman eigenfunctions-admitting suitable expressivity. The efficacy of our approach is demonstrated in simulations.

OriginalspracheEnglisch
Titel2022 American Control Conference, ACC 2022
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten2736-2741
Seitenumfang6
ISBN (elektronisch)9781665451963
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung2022 American Control Conference, ACC 2022 - Atlanta, USA/Vereinigte Staaten
Dauer: 8 Juni 202210 Juni 2022

Publikationsreihe

NameProceedings of the American Control Conference
Band2022-June
ISSN (Print)0743-1619

Konferenz

Konferenz2022 American Control Conference, ACC 2022
Land/GebietUSA/Vereinigte Staaten
OrtAtlanta
Zeitraum8/06/2210/06/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Learning the Koopman Eigendecomposition: A Diffeomorphic Approach“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren