LEARNING THE DYNAMICS OF PHYSICAL SYSTEMS FROM SPARSE OBSERVATIONS WITH FINITE ELEMENT NETWORKS

Marten Lienen, Stephan Günnemann

Publikation: KonferenzbeitragPapierBegutachtung

18 Zitate (Scopus)

Abstract

We propose a new method for spatio-temporal forecasting on arbitrarily distributed points. Assuming that the observed system follows an unknown partial differential equation, we derive a continuous-time model for the dynamics of the data via the finite element method. The resulting graph neural network estimates the instantaneous effects of the unknown dynamics on each cell in a meshing of the spatial domain. Our model can incorporate prior knowledge via assumptions on the form of the unknown PDE, which induce a structural bias towards learning specific processes. Through this mechanism, we derive a transport variant of our model from the convection equation and show that it improves the transfer performance to higher-resolution meshes on sea surface temperature and gas flow forecasting against baseline models representing a selection of spatio-temporal forecasting methods. A qualitative analysis shows that our model disentangles the data dynamics into their constituent parts, which makes it uniquely interpretable.

OriginalspracheEnglisch
PublikationsstatusVeröffentlicht - 2022
Veranstaltung10th International Conference on Learning Representations, ICLR 2022 - Virtual, Online
Dauer: 25 Apr. 202229 Apr. 2022

Konferenz

Konferenz10th International Conference on Learning Representations, ICLR 2022
OrtVirtual, Online
Zeitraum25/04/2229/04/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „LEARNING THE DYNAMICS OF PHYSICAL SYSTEMS FROM SPARSE OBSERVATIONS WITH FINITE ELEMENT NETWORKS“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren