Learning task-parameterized dynamic movement primitives using mixture of GMMs

Affan Pervez, Dongheui Lee

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

57 Zitate (Scopus)

Abstract

Task-parameterized skill learning aims at adaptive motion encoding to new situations. While existing approaches for task-parameterized skill learning have demonstrated good adaptation within the demonstrated region, the extrapolation problem of task-parameterized skills has not been investigated enough. In this work, with the aim of good adaptation not only within the demonstrated region but also outside of the region, we propose to combine a generative model with a dynamic movement primitive by formulating learning as a density estimation problem. Moreover, for efficient learning from relatively few demonstrations, we propose to augment training data with additional incomplete data. The proposed method is tested and compared with existing works in simulations and real robot experiments. Experimental results verified its generalization in the extrapolation region.

OriginalspracheEnglisch
Seiten (von - bis)61-78
Seitenumfang18
FachzeitschriftIntelligent Service Robotics
Jahrgang11
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 1 Jan. 2018
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Learning task-parameterized dynamic movement primitives using mixture of GMMs“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren