Learning similarities for rigid and non-rigid object detection

Asako Kanezaki, Emanuele Rodolà, Daniel Cremers, Tatsuya Harada

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

5 Zitate (Scopus)

Abstract

In this paper, we propose an optimization method for estimating the parameters that typically appear in graph-theoretical formulations of the matching problem for object detection. Although several methods have been proposed to optimize parameters for graph matching in a way to promote correct correspondences and to restrict wrong ones, our approach is novel in the sense that it aims at improving performance in the more general task of object detection. In our formulation, similarity functions are adjusted so as to increase the overall similarity among a reference model and the observed target, and at the same time reduce the similarity among reference and "non-target" objects. We evaluate the proposed method in two challenging scenarios, namely object detection using data captured with a Kinect sensor in a real environment, and intrinsic metric learning for deformable shapes, demonstrating substantial improvements in both settings.

OriginalspracheEnglisch
TitelProceedings - 2014 International Conference on 3D Vision, 3DV 2014
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten720-727
Seitenumfang8
ISBN (elektronisch)9781479970018
DOIs
PublikationsstatusVeröffentlicht - 6 Feb. 2015
Veranstaltung2014 2nd International Conference on 3D Vision, 3DV 2014 - Tokyo, Japan
Dauer: 8 Dez. 201411 Dez. 2014

Publikationsreihe

NameProceedings - 2014 International Conference on 3D Vision, 3DV 2014

Konferenz

Konferenz2014 2nd International Conference on 3D Vision, 3DV 2014
Land/GebietJapan
OrtTokyo
Zeitraum8/12/1411/12/14

Fingerprint

Untersuchen Sie die Forschungsthemen von „Learning similarities for rigid and non-rigid object detection“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren