Learning quadrotor maneuvers from optimal control and generalizing in real-time

Teodor Tomić, Moritz Maier, Sami Haddadin

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

27 Zitate (Scopus)

Abstract

In this paper, we present a method for learning and online generalization of maneuvers for quadrotor-type vehicles. The maneuvers are formulated as optimal control problems, which are solved using a general purpose optimal control solver. The solutions are then encoded and generalized with Dynamic Movement Primitives (DMPs). This allows for real-time generalization to new goals and in-flight modifications. An effective method for joining the generalized trajectories is implemented. We present the necessary theoretical background and error analysis of the generalization. The effectiveness of the proposed method is showcased using planar point-to-point and perching maneuvers in simulation and experiment.

OriginalspracheEnglisch
TitelProceedings - IEEE International Conference on Robotics and Automation
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten1747-1754
Seitenumfang8
ISBN (elektronisch)9781479936854, 9781479936854
DOIs
PublikationsstatusVeröffentlicht - 22 Sept. 2014
Extern publiziertJa
Veranstaltung2014 IEEE International Conference on Robotics and Automation, ICRA 2014 - Hong Kong, China
Dauer: 31 Mai 20147 Juni 2014

Publikationsreihe

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Konferenz

Konferenz2014 IEEE International Conference on Robotics and Automation, ICRA 2014
Land/GebietChina
OrtHong Kong
Zeitraum31/05/147/06/14

Fingerprint

Untersuchen Sie die Forschungsthemen von „Learning quadrotor maneuvers from optimal control and generalizing in real-time“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren