Learning Occupancy Priors of Human Motion from Semantic Maps of Urban Environments

Andrey Rudenko, Luigi Palmieri, Johannes Doellinger, Achim J. Lilienthal, Kai O. Arras

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

11 Zitate (Scopus)

Abstract

Understanding and anticipating human activity is an important capability for intelligent systems in mobile robotics, autonomous driving, and video surveillance. While learning from demonstrations with on-site collected trajectory data is a powerful approach to discover recurrent motion patterns, generalization to new environments, where sufficient motion data are not readily available, remains a challenge. In many cases, however, semantic information about the environment is a highly informative cue for the prediction of pedestrian motion or the estimation of collision risks. In this work, we infer occupancy priors of human motion using only semantic environment information as input. To this end, we apply and discuss a traditional Inverse Optimal Control approach, and propose a novel approach based on Convolutional Neural Networks (CNN) to predict future occupancy maps. Our CNN method produces flexible context-Aware occupancy estimations for semantically uniform map regions and generalizes well already with small amounts of training data. Evaluated on synthetic and real-world data, it shows superior results compared to several baselines, marking a qualitative step-up in semantic environment assessment.

OriginalspracheEnglisch
Aufsatznummer9362163
Seiten (von - bis)3248-3255
Seitenumfang8
FachzeitschriftIEEE Robotics and Automation Letters
Jahrgang6
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - Apr. 2021
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Learning Occupancy Priors of Human Motion from Semantic Maps of Urban Environments“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren