Learning nonlinear spectral filters for color image reconstruction

Michael Moeller, Julia Diebold, Guy Gilboa, Daniel Cremers

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

14 Zitate (Scopus)

Abstract

This paper presents the idea of learning optimal filters for color image reconstruction based on a novel concept of nonlinear spectral image decompositions recently proposed by Guy Gilboa. We use a multiscale image decomposition approach based on total variation regularization and Bregman iterations to represent the input data as the sum of image layers containing features at different scales. Filtered images can be obtained by weighted linear combinations of the different frequency layers. We introduce the idea of learning optimal filters for the task of image denoising, and propose the idea of mixing high frequency components of different color channels. Our numerical experiments demonstrate that learning the optimal weights can significantly improve the results in comparison to the standard variational approach, and achieves state-of-the-art image denoising results.

OriginalspracheEnglisch
Titel2015 International Conference on Computer Vision, ICCV 2015
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten289-297
Seitenumfang9
ISBN (elektronisch)9781467383912
DOIs
PublikationsstatusVeröffentlicht - 17 Feb. 2015
Veranstaltung15th IEEE International Conference on Computer Vision, ICCV 2015 - Santiago, Chile
Dauer: 11 Dez. 201518 Dez. 2015

Publikationsreihe

NameProceedings of the IEEE International Conference on Computer Vision
Band2015 International Conference on Computer Vision, ICCV 2015
ISSN (Print)1550-5499

Konferenz

Konferenz15th IEEE International Conference on Computer Vision, ICCV 2015
Land/GebietChile
OrtSantiago
Zeitraum11/12/1518/12/15

Fingerprint

Untersuchen Sie die Forschungsthemen von „Learning nonlinear spectral filters for color image reconstruction“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren