TY - GEN
T1 - Learning meshes for dense visual SLAM
AU - Bloesch, Michael
AU - Laidlow, Tristan
AU - Clark, Ronald
AU - Leutenegger, Stefan
AU - Davison, Andrew
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/10
Y1 - 2019/10
N2 - Estimating motion and surrounding geometry of a moving camera remains a challenging inference problem. From an information theoretic point of view, estimates should get better as more information is included, such as is done in dense SLAM, but this is strongly dependent on the validity of the underlying models. In the present paper, we use triangular meshes as both compact and dense geometry representation. To allow for simple and fast usage, we propose a view-based formulation for which we predict the in-plane vertex coordinates directly from images and then employ the remaining vertex depth components as free variables. Flexible and continuous integration of information is achieved through the use of a residual based inference technique. This so-called factor graph encodes all information as mapping from free variables to residuals, the squared sum of which is minimised during inference. We propose the use of different types of learnable residuals, which are trained end-to-end to increase their suitability as information bearing models and to enable accurate and reliable estimation. Detailed evaluation of all components is provided on both synthetic and real data which confirms the practicability of the presented approach.
AB - Estimating motion and surrounding geometry of a moving camera remains a challenging inference problem. From an information theoretic point of view, estimates should get better as more information is included, such as is done in dense SLAM, but this is strongly dependent on the validity of the underlying models. In the present paper, we use triangular meshes as both compact and dense geometry representation. To allow for simple and fast usage, we propose a view-based formulation for which we predict the in-plane vertex coordinates directly from images and then employ the remaining vertex depth components as free variables. Flexible and continuous integration of information is achieved through the use of a residual based inference technique. This so-called factor graph encodes all information as mapping from free variables to residuals, the squared sum of which is minimised during inference. We propose the use of different types of learnable residuals, which are trained end-to-end to increase their suitability as information bearing models and to enable accurate and reliable estimation. Detailed evaluation of all components is provided on both synthetic and real data which confirms the practicability of the presented approach.
UR - http://www.scopus.com/inward/record.url?scp=85081920696&partnerID=8YFLogxK
U2 - 10.1109/ICCV.2019.00595
DO - 10.1109/ICCV.2019.00595
M3 - Conference contribution
AN - SCOPUS:85081920696
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 5854
EP - 5863
BT - Proceedings - 2019 International Conference on Computer Vision, ICCV 2019
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 17th IEEE/CVF International Conference on Computer Vision, ICCV 2019
Y2 - 27 October 2019 through 2 November 2019
ER -