Learning meshes for dense visual SLAM

Michael Bloesch, Tristan Laidlow, Ronald Clark, Stefan Leutenegger, Andrew Davison

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

15 Zitate (Scopus)

Abstract

Estimating motion and surrounding geometry of a moving camera remains a challenging inference problem. From an information theoretic point of view, estimates should get better as more information is included, such as is done in dense SLAM, but this is strongly dependent on the validity of the underlying models. In the present paper, we use triangular meshes as both compact and dense geometry representation. To allow for simple and fast usage, we propose a view-based formulation for which we predict the in-plane vertex coordinates directly from images and then employ the remaining vertex depth components as free variables. Flexible and continuous integration of information is achieved through the use of a residual based inference technique. This so-called factor graph encodes all information as mapping from free variables to residuals, the squared sum of which is minimised during inference. We propose the use of different types of learnable residuals, which are trained end-to-end to increase their suitability as information bearing models and to enable accurate and reliable estimation. Detailed evaluation of all components is provided on both synthetic and real data which confirms the practicability of the presented approach.

OriginalspracheEnglisch
TitelProceedings - 2019 International Conference on Computer Vision, ICCV 2019
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten5854-5863
Seitenumfang10
ISBN (elektronisch)9781728148038
DOIs
PublikationsstatusVeröffentlicht - Okt. 2019
Extern publiziertJa
Veranstaltung17th IEEE/CVF International Conference on Computer Vision, ICCV 2019 - Seoul, Südkorea
Dauer: 27 Okt. 20192 Nov. 2019

Publikationsreihe

NameProceedings of the IEEE International Conference on Computer Vision
Band2019-October
ISSN (Print)1550-5499

Konferenz

Konferenz17th IEEE/CVF International Conference on Computer Vision, ICCV 2019
Land/GebietSüdkorea
OrtSeoul
Zeitraum27/10/192/11/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Learning meshes for dense visual SLAM“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren