Learning Local Displacements for Point Cloud Completion

Yida Wang, David Joseph Tan, Nassir Navab, Federico Tombari

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

41 Zitate (Scopus)

Abstract

We propose a novel approach aimed at object and semantic scene completion from a partial scan represented as a 3D point cloud. Our architecture relies on three novel layers that are used successively within an encoder-decoder structure and specifically developed for the task at hand. The first one carries out feature extraction by matching the point features to a set of pre-trained local descriptors. Then, to avoid losing individual descriptors as part of standard operations such as max-pooling, we propose an alternative neighbor-pooling operation that relies on adopting the feature vectors with the highest activations. Finally, upsampling in the decoder modifies our feature extraction in order to increase the output dimension. While this model is already able to achieve competitive results with the state of the art, we further propose a way to increase the versatility of our approach to process point clouds. To this aim, we introduce a second model that assembles our layers within a transformer architecture. We evaluate both architectures on object and indoor scene completion tasks, achieving state-of-the-art performance.

OriginalspracheEnglisch
TitelProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Herausgeber (Verlag)IEEE Computer Society
Seiten1558-1567
Seitenumfang10
ISBN (elektronisch)9781665469463
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, USA/Vereinigte Staaten
Dauer: 19 Juni 202224 Juni 2022

Publikationsreihe

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Band2022-June
ISSN (Print)1063-6919

Konferenz

Konferenz2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Land/GebietUSA/Vereinigte Staaten
OrtNew Orleans
Zeitraum19/06/2224/06/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Learning Local Displacements for Point Cloud Completion“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren