Learning Lagrangian Fluid Mechanics with E(3)-Equivariant Graph Neural Networks

Artur P. Toshev, Gianluca Galletti, Johannes Brandstetter, Stefan Adami, Nikolaus A. Adams

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

We contribute to the vastly growing field of machine learning for engineering systems by demonstrating that equivariant graph neural networks have the potential to learn more accurate dynamic-interaction models than their non-equivariant counterparts. We benchmark two well-studied fluid-flow systems, namely 3D decaying Taylor-Green vortex and 3D reverse Poiseuille flow, and evaluate the models based on different performance measures, such as kinetic energy or Sinkhorn distance. In addition, we investigate different embedding methods of physical-information histories for equivariant models. We find that while currently being rather slow to train and evaluate, equivariant models with our proposed history embeddings learn more accurate physical interactions.

OriginalspracheEnglisch
TitelGeometric Science of Information - 6th International Conference, GSI 2023, Proceedings
Redakteure/-innenFrank Nielsen, Frédéric Barbaresco
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten332-341
Seitenumfang10
ISBN (Print)9783031382987
DOIs
PublikationsstatusVeröffentlicht - 2023
VeranstaltungThe 6th International Conference on Geometric Science of Information, GSI 2023 - St. Malo, Frankreich
Dauer: 30 Aug. 20231 Sept. 2023

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band14072 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

KonferenzThe 6th International Conference on Geometric Science of Information, GSI 2023
Land/GebietFrankreich
OrtSt. Malo
Zeitraum30/08/231/09/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Learning Lagrangian Fluid Mechanics with E(3)-Equivariant Graph Neural Networks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren