LEARNING from NOISY SAMPLES for MAN-MADE IMPERVIOUS SURFACE MAPPING

C. Qiu, P. Gamba, M. Schmitt, X. X. Zhu

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

1 Zitat (Scopus)

Abstract

Man-made impervious surfaces, indicating the human footprint on Earth, are an environmental concern because it leads to a chain of events that modifies urban air and water resources. To better map man-made impervious surfaces in any region of interest (ROI), we propose a framework for learning to map impervious areas in any ROIs from Sentinel-2 images with noisy reference data, using a pre-Trained fully convolutional network (FCN). The FCN is first trained with reference data only available in Europe, which is able to provide reasonable mapping results even in areas outside of Europe. The proposed framework, aiming to achieve an improvement over the preliminary predictions for a specific ROI, consists of two steps: noisy training data pre-processing and model fine-Tuning with robust loss functions. The framework is validated over four test areas located in different continents with a measurable improvement over several baseline results. It has been shown that a better impervious mapping result can be achieved through a simple fine-Tuning with noisy training data, and label updating through robust loss functions allows to further enhance the performances. In addition, by analyzing and comparing the mapping results to baselines, it can be highlighted that the improvement is mainly coming from a decreased omission error. This study can also provide insights for similar tasks, such as large-scale land cover/land use classification when accurate reference data is not available for training.

OriginalspracheEnglisch
Seiten (von - bis)787-794
Seitenumfang8
FachzeitschriftISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Jahrgang5
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - 3 Aug. 2020
Veranstaltung2020 24th ISPRS Congress on Technical Commission III - Nice, Virtual, Frankreich
Dauer: 31 Aug. 20202 Sept. 2020

Fingerprint

Untersuchen Sie die Forschungsthemen von „LEARNING from NOISY SAMPLES for MAN-MADE IMPERVIOUS SURFACE MAPPING“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren