Learning Fluid Flow Visualizations From In-Flight Images With Tufts

Jongseok Lee, W. F.J. Olsman, Rudolph Triebel

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

3 Zitate (Scopus)

Abstract

To better understand fluid flows around aerial systems, strips of wire or rope, widely known as tufts, are often used to visualize the local flow direction. This letter presents a computer vision system that automatically extracts the shape of tufts from images, which have been collected during real flights of a helicopter and an unmanned aerial vehicle (UAV). As images from these aerial systems present challenges to both the model-based computer vision and the end-to-end supervised deep learning techniques, we propose a semantic segmentation pipeline that consists of three uncertainty-based modules namely, (a) active learning for object detection, (b) label propagation for object classification, and (c) weakly supervised instance segmentation. Overall, these probabilistic approaches facilitate the learning process without requiring any manual annotations of semantic segmentation masks. Empirically, we motivate our design choices through comparative assessments and provide real-world demonstrations of the proposed concept, for the first time to our knowledge.

OriginalspracheEnglisch
Seiten (von - bis)3677-3684
Seitenumfang8
FachzeitschriftIEEE Robotics and Automation Letters
Jahrgang8
Ausgabenummer6
DOIs
PublikationsstatusVeröffentlicht - 1 Juni 2023
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Learning Fluid Flow Visualizations From In-Flight Images With Tufts“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren