Learning End-to-End Channel Coding with Diffusion Models

Muah Kim, Rick Fritschek, Rafael F. Schaefer

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

8 Zitate (Scopus)

Abstract

It is a known problem that deep-learning-based end-to-end (E2E) channel coding systems depend on a known and differentiable channel model, due to the learning process and based on the gradient-descent optimization methods. This places the challenge to approximate or generate the channel or its derivative from samples generated by pilot signaling in realworld scenarios. Currently, there are two prevalent methods to solve this problem. One is to generate the channel via a generative adversarial network (GAN), and the other is to, in essence, approximate the gradient via reinforcement learning methods. Other methods include using score-based methods, variational autoencoders, or mutual-information-based methods. In this paper, we focus on generative models and, in particular, on a new promising method called diffusion models, which have shown a higher quality of generation in image-based tasks. We will show that diffusion models can be used in wireless E2E scenarios and that they work as good as Wasserstein GANs while having a more stable training procedure and a better generalization ability in testing.

OriginalspracheEnglisch
TitelWSA and SCC 2023 - 26th International ITG Workshop on Smart Antennas and 13th Conference on Systems, Communications, and Coding
Herausgeber (Verlag)VDE VERLAG GMBH
Seiten208-213
Seitenumfang6
ISBN (elektronisch)9783800760510
PublikationsstatusVeröffentlicht - 2023
Extern publiziertJa
Veranstaltung26th International ITG Workshop on Smart Antennas, WSA 2023 and 13th Conference on Systems, Communications, and Coding, SCC 2023 - Braunschweig, Deutschland
Dauer: 27 Feb. 20233 März 2023

Publikationsreihe

NameWSA and SCC 2023 - 26th International ITG Workshop on Smart Antennas and 13th Conference on Systems, Communications, and Coding

Konferenz

Konferenz26th International ITG Workshop on Smart Antennas, WSA 2023 and 13th Conference on Systems, Communications, and Coding, SCC 2023
Land/GebietDeutschland
OrtBraunschweig
Zeitraum27/02/233/03/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Learning End-to-End Channel Coding with Diffusion Models“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren