Learning correspondences in knee MR images from the osteoarthritis initiative

Ricardo Guerrero, Claire R. Donoghue, Luis Pizarro, Daniel Rueckert

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Registration is a powerful tool that allows mapping images in a common space in order to aid in their analysis. Accurate registration of images of the knee is challenging to achieve using intensity based registration algorithms. Problems arise due to large anatomical inter-subject differences which causes registrations to fail to converge to an accurate solution. In this work we propose learning correspondences in pairs of images to match self-similarity features, that describe images in terms of their local structure rather than their intensity. We use RANSAC as a robust model estimator. We show a substantial improvement in terms of mean error and standard deviation of 2.13mm and 2.47mm over intensity based registration methods, when comparing landmark alignment error.

OriginalspracheEnglisch
TitelMachine Learning in Medical Imaging - Third International Workshop, MLMI 2012, Held in Conjunction with MICCAI 2012, Revised Selected Papers
Seiten218-225
Seitenumfang8
DOIs
PublikationsstatusVeröffentlicht - 2012
Extern publiziertJa
Veranstaltung3rd International Workshop on Machine Learning in Medical Imaging, MLMI 2012, Held in conjunction with the 15th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2012 - Nice, Frankreich
Dauer: 1 Okt. 20121 Okt. 2012

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band7588 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz3rd International Workshop on Machine Learning in Medical Imaging, MLMI 2012, Held in conjunction with the 15th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2012
Land/GebietFrankreich
OrtNice
Zeitraum1/10/121/10/12

Fingerprint

Untersuchen Sie die Forschungsthemen von „Learning correspondences in knee MR images from the osteoarthritis initiative“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren