Learning Correspondence Uncertainty via Differentiable Nonlinear Least Squares

Dominik Muhle, Lukas Koestler, Krishna Murthy Jatavallabhula, Daniel Cremers

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

We propose a differentiable nonlinear least squares framework to account for uncertainty in relative pose estimation from feature correspondences. Specifically, we introduce a symmetric version of the probabilistic normal epipolar constraint, and an approach to estimate the co-variance of feature positions by differentiating through the camera pose estimation procedure. We evaluate our approach on synthetic, as well as the KITTI and EuRoC real-world datasets. On the synthetic dataset, we confirm that our learned covariances accurately approximate the true noise distribution. In real world experiments, we find that our approach consistently outperforms state-of-the-art non-probabilistic and probabilistic approaches, regardless of the feature extraction algorithm of choice.

OriginalspracheEnglisch
TitelProceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
Herausgeber (Verlag)IEEE Computer Society
Seiten13102-13112
Seitenumfang11
ISBN (elektronisch)9798350301298
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 - Vancouver, Kanada
Dauer: 18 Juni 202322 Juni 2023

Publikationsreihe

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Band2023-June
ISSN (Print)1063-6919

Konferenz

Konferenz2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
Land/GebietKanada
OrtVancouver
Zeitraum18/06/2322/06/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Learning Correspondence Uncertainty via Differentiable Nonlinear Least Squares“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren