Learning-based Parameterized Barrier Function for Safety-Critical Control of Unknown Systems

Sihua Zhang, Di Hua Zhai, Xiaobing Dai, Tzu Yuan Huang, Yuanqing Xia, Sandra Hirche

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

With the increasing complexity of real-world systems and varying environmental uncertainties, it is difficult to build an accurate dynamic model, which poses challenges especially for safety-critical control. In this paper, a learningbased control policy is proposed to ensure the safety of systems with unknown disturbances through control barrier functions (CBFs). First, the disturbance is predicted by Gaussian process (GP) regression, whose prediction performance is guaranteed by a deterministic error bound. Then, a novel control strategy using GP-based parameterized high-order control barrier functions (GP-P-HOCBFs) is proposed via a shrunk original safe set based on the prediction error bound. In comparison to existing methods that involve adding strict robust safety terms to the HOCBF condition, the proposed method offers more flexibility to deal with the conservatism and the feasibility of solving quadratic problems within the CBF framework. Finally, the effectiveness of the proposed method is demonstrated by simulations on Franka Emika manipulator.

OriginalspracheEnglisch
Titel2024 IEEE 63rd Conference on Decision and Control, CDC 2024
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten8805-8810
Seitenumfang6
ISBN (elektronisch)9798350316339
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung63rd IEEE Conference on Decision and Control, CDC 2024 - Milan, Italien
Dauer: 16 Dez. 202419 Dez. 2024

Publikationsreihe

NameProceedings of the IEEE Conference on Decision and Control
ISSN (Print)0743-1546
ISSN (elektronisch)2576-2370

Konferenz

Konferenz63rd IEEE Conference on Decision and Control, CDC 2024
Land/GebietItalien
OrtMilan
Zeitraum16/12/2419/12/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Learning-based Parameterized Barrier Function for Safety-Critical Control of Unknown Systems“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren