Learning-Based Matching of 3D Submaps from Dense Stereo for Planetary-Like Environments

Hsuan Cheng Liao, Riccardo Giubilato, Wolfgang Sturzl, Rudolph Triebel

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

An autonomous robot typically requires a minimum capability of perceiving the surroundings and locating itself when it is deployed to an unknown environment. Such a task is generally known as Simultaneous Localization and Mapping (SLAM), for which pairwise submap matching is a common foundation for subsequent processes to construct a global map around the robot. While the task has been extensively studied and successfully accomplished with different advanced solutions, their applied domains are rather constrained within indoor or structured regions. In this paper, we enhance a seminal learning-based approach, 3DFeat-Net, with more sophisticated architectures, and evaluate them in extremely unorganized planetary-like environments. Our work demonstrates that the proposed enhancement performs better than classical feature-based algorithms, and therefore outlines a promising direction for future work.

OriginalspracheEnglisch
Titel2021 20th International Conference on Advanced Robotics, ICAR 2021
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten555-562
Seitenumfang8
ISBN (elektronisch)9781665436847
DOIs
PublikationsstatusVeröffentlicht - 2021
Extern publiziertJa
Veranstaltung20th International Conference on Advanced Robotics, ICAR 2021 - Ljubljana, Slowenien
Dauer: 6 Dez. 202110 Dez. 2021

Publikationsreihe

Name2021 20th International Conference on Advanced Robotics, ICAR 2021

Konferenz

Konferenz20th International Conference on Advanced Robotics, ICAR 2021
Land/GebietSlowenien
OrtLjubljana
Zeitraum6/12/2110/12/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Learning-Based Matching of 3D Submaps from Dense Stereo for Planetary-Like Environments“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren