Learning-adaptive deadband sampling for teleoperation-based skill transfer over the tactile Internet

Basak Gülecyüz, Luca Oppici, Xiao Xu, Andreas Noll, Eckehard Steinbach

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)

Abstract

In remote skill transfer, demonstrations of a task are provided over a network via teleoperation and the remote robot learns from these teleoperated demonstrations. In a typical bilateral teleoperation scenario, transmission of position/velocity and force/torque samples require high packet rates for system transparency. In this paper we present a data rate efficient approach in teleoperation while ensuring robust remote learning from demonstrations. Our approach adapts the deadband parameter in the perceptual deadband-based kinesthetic data reduction method considering the confidence in the learned model. Our experimental results show that the mean packet rate to achieve the same quality of learning is drastically reduced when using the proposed approach.

OriginalspracheEnglisch
Titel2021 17th International Symposium on Wireless Communication Systems, ISWCS 2021
Herausgeber (Verlag)VDE VERLAG GMBH
ISBN (elektronisch)9781728174327
DOIs
PublikationsstatusVeröffentlicht - 6 Sept. 2021
Veranstaltung17th International Symposium on Wireless Communication Systems, ISWCS 2021 - Berlin, Deutschland
Dauer: 6 Sept. 20219 Sept. 2021

Publikationsreihe

NameProceedings of the International Symposium on Wireless Communication Systems
Band2021-September
ISSN (Print)2154-0217
ISSN (elektronisch)2154-0225

Konferenz

Konferenz17th International Symposium on Wireless Communication Systems, ISWCS 2021
Land/GebietDeutschland
OrtBerlin
Zeitraum6/09/219/09/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Learning-adaptive deadband sampling for teleoperation-based skill transfer over the tactile Internet“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren