Learned cardinalities: Estimating correlated joins with deep learning

Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, Alfons Kemper

Publikation: KonferenzbeitragPapierBegutachtung

169 Zitate (Scopus)

Abstract

We describe a new deep learning approach to cardinality estimation. MSCN is a multi-set convolutional network, tailored to representing relational query plans, that employs set semantics to capture query features and true cardinalities. MSCN builds on sampling-based estimation, addressing its weaknesses when no sampled tuples qualify a predicate, and in capturing join-crossing correlations. Our evaluation of MSCN using a real-world dataset shows that deep learning signiicantly enhances the quality of cardinality estimation, which is the core problem in query optimization.

OriginalspracheEnglisch
PublikationsstatusVeröffentlicht - 2019
Veranstaltung9th Biennial Conference on Innovative Data Systems Research, CIDR 2019 - Pacific Grove, USA/Vereinigte Staaten
Dauer: 13 Jan. 201916 Jan. 2019

Konferenz

Konferenz9th Biennial Conference on Innovative Data Systems Research, CIDR 2019
Land/GebietUSA/Vereinigte Staaten
OrtPacific Grove
Zeitraum13/01/1916/01/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Learned cardinalities: Estimating correlated joins with deep learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren