Abstract
We describe a new deep learning approach to cardinality estimation. MSCN is a multi-set convolutional network, tailored to representing relational query plans, that employs set semantics to capture query features and true cardinalities. MSCN builds on sampling-based estimation, addressing its weaknesses when no sampled tuples qualify a predicate, and in capturing join-crossing correlations. Our evaluation of MSCN using a real-world dataset shows that deep learning signiicantly enhances the quality of cardinality estimation, which is the core problem in query optimization.
Originalsprache | Englisch |
---|---|
Publikationsstatus | Veröffentlicht - 2019 |
Veranstaltung | 9th Biennial Conference on Innovative Data Systems Research, CIDR 2019 - Pacific Grove, USA/Vereinigte Staaten Dauer: 13 Jan. 2019 → 16 Jan. 2019 |
Konferenz
Konferenz | 9th Biennial Conference on Innovative Data Systems Research, CIDR 2019 |
---|---|
Land/Gebiet | USA/Vereinigte Staaten |
Ort | Pacific Grove |
Zeitraum | 13/01/19 → 16/01/19 |