Lattice-Free Simplices with Lattice Width 2 d- o(d)

Lukas Mayrhofer, Jamico Schade, Stefan Weltge

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

5 Zitate (Scopus)

Abstract

The Flatness theorem states that the maximum lattice width Flt (d) of a d-dimensional lattice-free convex set is finite. It is the key ingredient for Lenstra’s algorithm for integer programming in fixed dimension, and much work has been done to obtain bounds on Flt (d). While most results have been concerned with upper bounds, only few techniques are known to obtain lower bounds. In fact, the previously best known lower bound Flt (d) ≥ 1.138 d arises from direct sums of a 3-dimensional lattice-free simplex. In this work, we establish the lower bound Flt(d)≥2d-O(d), attained by a family of lattice-free simplices. Our construction is based on a differential equation that naturally appears in this context. Additionally, we provide the first local maximizers of the lattice width of 4- and 5-dimensional lattice-free convex bodies.

OriginalspracheEnglisch
TitelInteger Programming and Combinatorial Optimization - 23rd International Conference, IPCO 2022, Proceedings
Redakteure/-innenKaren Aardal, Laura Sanità
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten375-386
Seitenumfang12
ISBN (Print)9783031069000
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung23rd International Conference on Integer Programming and Combinatorial Optimization, IPCO 2022 - Eindhoven, Niederlande
Dauer: 27 Juni 202229 Juni 2022

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band13265 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz23rd International Conference on Integer Programming and Combinatorial Optimization, IPCO 2022
Land/GebietNiederlande
OrtEindhoven
Zeitraum27/06/2229/06/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Lattice-Free Simplices with Lattice Width 2 d- o(d)“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren