Late fusion for person detection in camera networks

Martin Hofmann, Martin Kiechle, Gerhard Rigoll

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

In this paper, we present a novel method to detect multiple partially occluded persons in multi-view camera networks. We present a new fusion scheme to integrate the output of part-based object detectors from multiple camera views. This is achieved using subtle and precise modeling of detection and projection uncertainties as well as a fusion method based on probabilistic kernel density estimation. Using a multi-view setup also allows to incorporate additional real-world prior knowledge about person appearances, which not only speeds up processing, but also increases detection rates. Experiments show that this multi-camera approach outperforms methods based on a single perspective, particularly in occlusion-intense scenarios.

OriginalspracheEnglisch
Titel2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2011
Herausgeber (Verlag)IEEE Computer Society
Seiten41-46
Seitenumfang6
ISBN (Print)9781457705298
DOIs
PublikationsstatusVeröffentlicht - 2011
Veranstaltung2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2011 - Colorado Springs, CO, USA/Vereinigte Staaten
Dauer: 20 Juni 201125 Juni 2011

Publikationsreihe

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
ISSN (Print)2160-7508
ISSN (elektronisch)2160-7516

Konferenz

Konferenz2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2011
Land/GebietUSA/Vereinigte Staaten
OrtColorado Springs, CO
Zeitraum20/06/1125/06/11

Fingerprint

Untersuchen Sie die Forschungsthemen von „Late fusion for person detection in camera networks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren