Large-scale audio feature extraction and SVM for acoustic scene classification

Jurgen T. Geiger, Bjorn Schuller, Gerhard Rigoll

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

94 Zitate (Scopus)

Abstract

This work describes a system for acoustic scene classification using large-scale audio feature extraction. It is our contribution to the Scene Classification track of the IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events (D-CASE). The system classifies 30 second long recordings of 10 different acoustic scenes. From the highly variable recordings, a large number of spectral, cepstral, energy and voicing-related audio features are extracted. Using a sliding window approach, classification is performed on short windows. SVM are used to classify these short segments, and a majority voting scheme is employed to get a decision for longer recordings. On the official development set of the challenge, an accuracy of 73 % is achieved. SVM are compared with a nearest neighbour classifier and an approach called Latent Perceptual Indexing, whereby SVM achieve the best results. A feature analysis using the t-statistic shows that mainly Mel spectra are the most relevant features.

OriginalspracheEnglisch
Titel2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, WASPAA 2013
DOIs
PublikationsstatusVeröffentlicht - 2013
Veranstaltung2013 14th IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, WASPAA 2013 - New Paltz, NY, USA/Vereinigte Staaten
Dauer: 20 Okt. 201323 Okt. 2013

Publikationsreihe

NameIEEE Workshop on Applications of Signal Processing to Audio and Acoustics

Konferenz

Konferenz2013 14th IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, WASPAA 2013
Land/GebietUSA/Vereinigte Staaten
OrtNew Paltz, NY
Zeitraum20/10/1323/10/13

Fingerprint

Untersuchen Sie die Forschungsthemen von „Large-scale audio feature extraction and SVM for acoustic scene classification“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren