Large Language Model-Enabled Multi-Agent Manufacturing Systems

Jonghan Lim, Birgit Vogel-Heuser, Ilya Kovalenko

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Traditional manufacturing faces challenges adapting to dynamic environments and quickly responding to manufacturing changes. The use of multi-agent systems has improved adaptability and coordination but requires further advancements in rapid human instruction comprehension, operational adaptability, and coordination through natural language integration. Large language models like GPT-3.5 and GPT-4 enhance multi-agent manufacturing systems by enabling agents to communicate in natural language and interpret human instructions for decision-making. This research introduces a novel framework where large language models enhance the capabilities of agents in manufacturing, making them more adaptable, and capable of processing context-specific instructions. A case study demonstrates the practical application of this framework, showing how agents can effectively communicate, understand tasks, and execute manufacturing processes, including precise G-code allocation among agents. The findings highlight the importance of continuous large language model integration into multi-agent manufacturing systems and the development of sophisticated agent communication protocols for a more flexible manufacturing system.

OriginalspracheEnglisch
Titel2024 IEEE 20th International Conference on Automation Science and Engineering, CASE 2024
Herausgeber (Verlag)IEEE Computer Society
Seiten3940-3946
Seitenumfang7
ISBN (elektronisch)9798350358513
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung20th IEEE International Conference on Automation Science and Engineering, CASE 2024 - Bari, Italien
Dauer: 28 Aug. 20241 Sept. 2024

Publikationsreihe

NameIEEE International Conference on Automation Science and Engineering
ISSN (Print)2161-8070
ISSN (elektronisch)2161-8089

Konferenz

Konferenz20th IEEE International Conference on Automation Science and Engineering, CASE 2024
Land/GebietItalien
OrtBari
Zeitraum28/08/241/09/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Large Language Model-Enabled Multi-Agent Manufacturing Systems“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren